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Accurate springback prediction in high-strength steels sheet forming is critical because it determines the final
geometry and residual stresses of formed parts. In this study, we performed finite-element simulations of U-bend
springback in DP780 dual-phase steel. During forming the sheet experiences tensile loading, unloading, reverse
compressive loading, and a second unloading; early yielding often emerges near the end of each unloading stage.
Consequently, apart from proper boundary conditions, choosing an appropriate elastoplastic constitutive model is pivotal
to realistic springback simulation. Because the Subloading Surface elastoplastic Model (SSM) could reproduce early
yielding, we investigated its applicability to springback and compared it with the classical Voce—Armstrong Mixed-
Hardening Model (MHM). We confirmed that the final springback shape can be brought close to experiments by tuning
material parameters as reported elsewhere. With the classical model, however, this tuning relies on changing the elastic
modulus, an adjustment that drives the stress-strain response away from test data. In contrast, SSM permits the yield
surface to be approached elastoplastically and captures early yielding via translation of an “elastic core”. By fine-tuning
the magnitude of the elastic core translation, we can target the springback amount while still matching the stress-strain
curve. Our results demonstrate that SSM can simultaneously fit both the stress-strain behaviour and the final geometry,

whereas the classical model can at best reproduce one or the other.
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Fig. 1 Boundary conditions, tool dimensions of the U-draw bending test, and mesh pattern.
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Table 1 Parameters of SSM and MHM.

Elastic property Isotropic hardening Kinematic hardening
E[GPa] v S, Cy Fy[MPa] C[MPa] by MHM
205 0.3 0.23 9 544 11000 0.41
o ; ; : : : ; : : SSM
Similarity center translation | Evolution of normal yield ratio | Stagnation of isotropic hardening
C,[MPa] X U, Up R, c ¢ v
6000 0.83 200 0.001 0.1 0.5 3 3
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Fig. 2 Parameter fitting results for stress-strain curves of tension-compression test for DP780 and simulation results
comparing with experiment measurement. (a) Parameter fitting results using SSM, (b) Simulation results using SSM, (c)
Parameter fitting results using MHM with a lower Young's modulus, (d) Simulation results using MHM with a lower Young's
modulus, (e) Parameter fitting results using MHM with a higher Young's modulus, (f) Simulation results using MHM with a
higher Young's modulus.
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